Sequential Encodings from Max-CSP into Partial Max-SAT

نویسندگان

  • Josep Argelich
  • Alba Cabiscol
  • Inês Lynce
  • Felip Manyà
چکیده

We define new encodings from Max-CSP into Partial MaxSAT which are obtained by modelling the at-most-one condition with the sequential SAT encoding of the cardinality constraint ≤ 1(x1, . . . , xn). They have fewer clauses than the existing encodings, and the experimental results indicate that they have a better performance profile.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling Max-CSP as Partial Max-SAT

We define a number of original encodings that map MaxCSP instances into partial Max-SAT instances. Our encodings rely on the well-known direct and support encodings from CSP into SAT. Then, we report on an experimental investigation that was conducted to compare the performance profile of our encodings on random binary Max-CSP instances. Moreover, we define a new variant of the support encoding...

متن کامل

Sugar++: A SAT-Based MAX-CSP/COP Solver

This paper briefly describes some features of Sugar++, a SAT-based MAXCSP/COP solver entering the Third International CSP Solver Competition. In our approach, a MAX-CSP is translated into a Constraint Optimization Problem (COP), and then it is encoded into a SAT problem by the order encoding method [1]. SAT-encoded COP can be efficiently solved by repeatedly using the MiniSat solver [2]. The or...

متن کامل

Improved Algorithms for Sparse MAX-SAT and MAX-k-CSP

We give improved deterministic algorithms solving sparse instances of MAX-SAT and MAX-k-CSP. For instances with n variables and cn clauses (constraints), we give algorithms running in time poly(n)· 2n(1−μ) for – μ = Ω( 1 c ) and polynomial space solving MAX-SAT and MAX-kSAT, – μ = Ω( 1 √ c ) and exponential space solving MAX-SAT and MAX-kSAT, – μ = Ω( 1 ck2 ) and polynomial space solving MAX-k-...

متن کامل

Natural Max-SAT Encoding of Min-SAT

We show that there exists a natural encoding which transforms Min-SAT instances into Max-SAT instances. Unlike previous encodings, this natural encoding keeps the same variables, and the optimal assignment for the Min-SAT instance is identical to the optimal assignment of the corresponding Max-SAT instance. In addition to that the encoding can be generalized to the Min-SAT variants with clause ...

متن کامل

Planning as constraint satisfaction: Solving the planning graph by compiling it into CSP

The idea of synthesizing bounded length plans by compiling planning problems into a combinatorial substrate, and solving the resulting encodings has become quite popular in recent years. Most work to-date has however concentrated on compilation to satis ability (SAT) theories and integer linear programming (ILP). In this paper we will show that CSP is a better substrate for the compilation appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009